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The Moon as a Calibration Target of Convenience for
VHF - UHF Radar Systems
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Abstract

Knowledge of the absolute, versus relative, performance characteristics of VHF and UHF
radars used in geophysical applications is often important. We suggest that the moon
may form a convenient, easily tracked calibration target for many such radars. The lunar
absolute radar scattering cross-section is large, well known (~7% of the visible disk) and
is essentially wavelength independent over 6m > A > lcm. We develop and present the
radar equation appropriate to this calibration process and give the results of calibrating
the Arecibo 430 MHz radar in this manner.
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1. INTRODUCTION

It is often convenient and even necessary to verify the performance of a radar system
in an absolute sense. An example of current interest involves the so-called ST or MST
(Mesospheric, Stratospheic, Tropospheric) radars [Harper and Gordon, 1980 for which
absolute scattering cross-sections per unit volume from these atmospheric regions could
prove valuable [e.g., Rottger, 1980]. Unfortunately, the complexity of these and similar
systems [e.g., the Arecibo 430 MHz Incoherent Scatter Radar (ISR) system| make absolute
calibration of the total system done by calibrating the individual subsystems difficult
and subject to cumulative errors. However, if a radar target of relatively simple known
characteristics were available each radar system could be regularly checked and inter-
compared. This was the intent of the 1 m? optical cross-section Lincoln Calibration Sphere
(LCS) launched into a 1500 km almost circular orbit in 1965 [Prosse, 1965). Unfortunately,
the LCS and similar targets pose a tracking and system sensitivity problem for simple
radars and degrade from micrometer collisions over time.

An easily tracked, well characterized alternative target which is visible to some MST
and ISR radars is the moon. The moon has been the subject of intense investigation by
radar astronomers for many years |e.g., Hagfors and Evans, 1968) and is still the subject
of considerable interest [Thompson, 1979; Tyler, 1979; Simpson and Tyler, 1982]. This
work has led to excellent determinations of the total lunar radar scattering cross-section.
This cross-section, ,, is about 0.071x rj (r, is the lunar radius) and is nearly frequency
independent for 6 m> A >1 cm [Evans and Pettengill, 1963 a,b; Evans and Hagfors, 1966;
Evans, 1969; Burns, 1970]. Monostatic radar scattering from the moon is dominated by the
small region of the moon directly “below” the radar, the subradar point. Scattering from
the subradar region is termed quasi-specular in that it arises from the almost “smooth”
(i.e., surfaces which are flat compared with probing wavelength, of area of order A? or larger
and with surface normals parallel or nearly parallel to the radar wave vector) regions within
the subradar region [Hagfors and Evans, 1968; Simpson, 1976). Total cross-section results
do however depend on the location of the subradar point on the moon [Burns, 1970] and, at
longer wavelengths, on careful accounting for ionospheric Faraday rotating effects if linear
polarization is used [Hagfors and Evans, 1968]. More will be said about o, as we derive

and employ it in later section.

The idea of using the moon as a reasonably general calibration target occurred as a
result of an attempt to calibrate the Arecibo 430 MHz radar system for absolute measure-
ments of power scattered incoherently from the ionosphere [e.g., Mathews, 1984, 1985|.
This attempt required careful determinations of the antenna pattern |Breakall and Math-
ews, 1982; Breakall, 1983] as well as transmitted power and overall system performance.
We choose to employ the moon as a calibration target to first compare the high power
transmitter performance with that of a low power, well characterized reference transmit-
ter and secondly to determine the total lunar scattering cross-section for comparison with
earlier work. These tasks were successful and are reported here.



Section 2 of this paper is devoted to the various forms of the radar equation derived
in Appendix A while Section 3 contains the results of applying the radar equation to the
Arecibo 430 MHs moon bounce experiment. Section 4 is a summary and general discussion
of how the moon may be used as a VHF-UHF calibration target.

II. RADAR LUNAR CALIBRATION PROCEDURES

The calibration procedure we describe requires only total scattered power as a function
of time (pulsed radar mode) assuming that the radar is tracking the nearest point on the
moon (the subradar point). An appropriate form of the lunar radar equation is derived
in Appendix A with experiment geometry given in Fig. Al. For a simple wide antenna
beam (beam full width at half maximum greater than the 1/2° lunar apparent “size”)
radar operated in quasi-CW mode (“square” pulse lengths approaching 11.6 msec) the
total (i.e., peak) received power is given by (A12) as

AzLP‘,Gz
Prp= de (1)

where R, the radar-subradar point distance, is approximately 3.76 x 10°m while o,, the
total lunar radar scattering cross-section is about 0.071+0.018 (+1.2 dB, -1.3 dB) [Evans
and Hagfors, 1968; average of Table 5-2 results for 0.86 cmm< A <784 cm less the 12.5 cm
result] the projected area of the moon. When Pp, is determined absolutely by comparing the
relative received power with a noise calibration standard (i.e., Py = xT.B = noise power;
x = Boltzmann’s constant, T, = calibration source temperature, B = noise bandwidth)

(1) yields LP,G3.

The conditions required for (1) to obtain seldom occur. For example, the antenna
beam maybe wide compared with the moon but the transmitter used may not provide
a quasi-CW mode or the long pulse provided may decay in power due to power supply
“droop”. In this case (All) is used with P,(©) =~ 1 (wide beam) yielding

Palt) = Toramt oo () (2

The pulse/lunar weighting function W(t) is defined as
T
w(t) = % / ' e~ =) [g(¢ — ¢ + A) — 8(t — t')]ya(t')wer dt’ (3)
0o

where various terms are defined in Appendix A and we assume an exponentially decaying
pulse of length A (any pulse shape can be used). The normalized scattering cross-section v,
is defined in equations (A13) and (A14) in terms of very short pulse, wide beam scattering

from the moon.



It is clear from (3) that unless (1) obtains the normalized cross-sections v, (t) is needed
for the wavelength of the radar in question. I the “wide-beam”approximation applies -
~n(t) maybe measured directly if sufficient signal-to-noise ratio is available to make this
approach viable (note that this measurement if successful immediately “calibrates” the
radar via equations (A9), (A10), and (A13)). Fortunately, however, 7, is available from
the literature for several wavelengths of interest. Representative results are given in Figs.
5-9, 10 of Evans and Hagfors [1968]. Tabulated +, versus delay (or lunar angle a) are
given for A =3.8, 23, and 68 cm by Hagfors [1967, Table 1; 1970, Table 6].

An analytic formula for v, is given by Beckman [1965] and in his references. This
analytic form, which is remarkably accurate (+1dB), is in terms of lunar angle a = aft)
(see Fig. Al and equation (A4)) and is

m(a) = {cos*a+ C az'n’a}‘; - ezp [—% tan a erfc (K cot a)] (4)

where

erfe(z) = —%/:o e~dt

and where “constants” C and K are wavelength dependent. In (4) the polynomial term
describes the quasi-specular component of scattering which comes from the “smooth”
structures in the subradar region. The exponential term describes the “diffuse” scattering
component which arises from irregular surface features and is dominant for larger a values.
That is, at light frequencies the diffuse component is totally dominant (i.e., no bright spot)
and the surface appears to be uniformly bright while at A = 68 cm the subradar region
is “bright” (the quasi-specular component contribute 83% of the total scattering cross-
section, Evans and Hagfors, 1968, section 5.4) compared with the “limb” regions. The
subradar region becomes even brighter relative to the limb regions at meter wavelengths
[e.g., see Klemperer, 1965). Values of C and K from (4) are given in Table 1 for a few

wavelength values.

Finally a “worst case” calibration involves no simplifications to (A11). This is the
situation with the Arecibo 430 MHz incoherent scatter radar system which has a half-
power beam width of 1/6° which is considerable less than the 1/2° apparent angular size
of the moon. We consider the full calibration of the Arecibo system in the next section.

OI. THE ARECIBO 430 MHz RADAR SYSTEM CALIBRATION

The procedures we describe here were designed to measure the absolute performance
characteristics of the Arecibo 430 MHz radar as a total system (receiver, transmitter,
antenna) and of the main transmitter as a separate system component. To this end we
used both the main, high power (~2.0 MWatt) transmitter and a well characterized low



power (5.9 Watt) reference transmitter to illuminate the moon as the sub-radar point on
the moon was “tracked”. The full form of the radar equation, (A11) must be used in this
case due to the narrow beamwidth of the 61.1 dBi gain antenna. Thus the antenna pattern
is needed in order to interpret these measurements in terms of (A11). The pattern has
been obtained both theoretically and experimentally as described by Breakall and Mathews

[1982].

The low power transmitter was connected to the antenna feed at the turnstile junction
[Meyer and Goldberg, 1955] thus avoiding losses in 1300 feet of waveguide as well as
slight coupling losses. The parametric amplifier “front-end” was, because of large signal
strengths, isolated from the feed by 20.99 dB or 71.59 dB attenuation during use of the
low and high power transmitters respectively. Waveguide loss was measured to be 1.25 dB
for the main transmitter and a 9.78 kHz noise bandwidth Gaussian IF filter was used in
the receiver system. Transmitter pulse length was 2 msec (decaying exponentials as will
be discussed) with a 101.6 msec interpulse period (IPP). The lunar distance at the time
of the experiment was about 3.674 x 10°km yielding a pulse travel time of 2.45 sec. Thus
24 pulses were transmitted before a particular pulse was received. The IPP was adjusted
so that returning pulses arrived at a time when the receiver could be conveniently gated

on. The parameters of the experiment are listed in Table 2.

This experiment was performed on 28 October 1980 when the moon passed within 2°
of zenith at 042736 hrs local time (66° 45.2'W, 18° 20°36.6”N). The low power transmitter
was used from 0347-0406 hrs (before transit) and the high power transmitted was used
from 0454-0510 hrs (after transit). During these periods data was accumulated (averaged)
for 500 IPP’s (~50 secs) and then written on magnetic tape.

Analysis of this data takes two forms. First the two se_ts'of results are compared to
determine the relative performance of the two transmitters. Secondly, via (A1l), total
system performance is evaluated and our assumptions concerning the form of «, [see(4)]

are tested.

The two transmitters are compared on a relative basis by determining the “best”
signal-to-noise ratios for each observing mode; adjusting these ratios to account for differing
receiver attenuation, and then taking the ratio of the resultant SNR’s where noise level
is the same for both modes. The SNR for each mode is determined as indicated in Fig.
1. Figure 1 shows the received, lunar scattered radar puise in a 4.5 msec long segment
of the 50 msec “observing window” used in this work. This return, which is from the
1.7 MWatt transmitter, is the result of accumulating (summing) 500 IPP’s (50.8 secs, 1
tape write) of results which were sampled every 50 usecs for 1000 range gates. The solid
lines are average values of the baseline excluding the pulse and of the pulse peak (the 30
samples starting 0.5 msec “into” the pulse are averaged) while the dashed lines are at the
1 and 5 standard deviation level for the pulse peak and baseline respectively. The ratio
of the peak-to-baseline value is the SNR for each 500 IPP sample. Note that the error



in the estimate of the SNR is dominated by the “noise” at the pulse peak. This noise is
dominated by interference effects (fading) among various lunar scattering centers as the
subradar location moves across the lunar surface due, mostly, to the earth’s rotation {lunar

libration; Evans and Hagfors, 1968; section 5-3).

Errors in SNR estimates are lessened by averaging together all SNR estimates for
the low and all high power transmitter modes respectively. Before this was done a small
zenith angle correction to the gain was applied to each 500 IPP estimate of the SNR.
This correction (which references the SNR to 0° zenith angle) arises from the fact that
at Arecibo “pointing” is achieved by moving the feed (resulting in imperfect illumination
of the spherical disk at larger zenith angles) rather than the entire structure. The total
correction, obtained from radio astronomical observations, is very accurate and amounts
to a maximum of 1 dB gain correction or 2 dB shift in SNR (see (A11)). The resultant
SNR’s, before removal of receiver attenuation, are (see Table 2) 5.5 + 0.5 and 10.2 + 1.0 for
the low and high power transmitted respectively. After removal of the 50.6 dB difference
in receiver attenuation we find the high power transmitter delivered 1.256 MW at the feed
or 1.68 MW after removal of waveguide losses. This measurement confirmed the validity

of the bolometer power measurements.

The radar system absolute properties are determined via (A11) and using the final
SNR values converted to absolute power. The system temperature was determined, by
use of a calibration noise source, to be T,,, = 339 K. The system noise bandwidth was

9.78 kHs thus absolute noise power is
PN = kT3 B - (SNR) ()

where x is Boltzmann’s constant. Average signal power at the pulse peak (see Fig. 1) is
then 3.16 x 10~ Watts and 6.73 x 10~ Watts for the low and high power transmitters

respectively.

As is clear from (All) we must determine I' (see (A10)) and evaluate Pp(t) at the
pulse peak in order to interpret received absolute power levels in terms of the lunar radar
cross-section. In Fig. 2 the normalized antenna pattern squared and <, (the 68 cm result
from Hagfors (1967) Table 1) are plotted versus the “distance” into the moon measured
in round-trip travel time assuming that the subradar point is being tracked. Note that ~,
falls off much more steeply than p2 clearly indicating that even the Arecibo radar “sees”
the moon as an angularly unresolved bright spot which is distinguishable only by high
time resolution measurements. The integral of 4, (t) as defined by (A10) is ' = 1.4301
(-4)-wcry. The integral of the product of v, and p2 is about 0.52 I' indicating (see A11)
that a maximum of 0.52 of the lunar scattering cross-section is “visible” to the A0 radar

even in the quasi-CW case.



As a measure of the validity of v, as chosen we compare the theoretical Pp(t) with
the highly averaged low and high power transmitter derived return pulses. In Fig. 3a, b we
show these pulses along with two “predicted” pulses for each case. The theoretical curves
marked 7; — oo assume an ideal “square” transmitter pulse and asymptotically approach
the value of the quasi-CW case. However the measured returns display a peak and then
decay slowly until t=2 msec after which the expected steep decline occurs. This type
return is characteristic of transmitter “droop” during the pulse. Unfortunately we did not
realize the existence of this problem during the experiment. However, later measurements
confirmed the basic exponential behavior which we assume in (A11).

The theoretical curves in Fig. 3 which closely resemble the measured results assume
low and high power transmitter time constants of 16 msec and 30 msec respectively. These
time constants were determined by comparing a family of theoretical curves with the
experimental results. No formal fitting procedure was used since 7, has also been assumed.
Despite these difficulties the quality of the “fit” of the theoretical to experimental curves
indicates the basic validity of our approach and allows for a determination of o, using
(A11) and the average signal power at the peak of the return pulses. Also different ~,
curves were tried in order to test the sensitivity of our results to 7,. We found that use
of (4) with the Table 1 68 cm coefficients resulted in an ~1% change in inferred o, while
use of the 23 cm coefficients produced only a 15% (0.6 dB) increase in o,.

The final averaged signal powers are based on averaging the 30 samples obtained
0.5 msec after the start of the pulse. The equivalent average of the Pp(t) curves of Fig. 3
is expressed as the average of W(t) (given by (3)) and is W = 0.479 and W = 0.496 for
the low and high power transmitters respectively (see Table 3). These results represent
minor deviations from an ideal square pulse for which W = 0.516. The apparent lunar
cross-section is now easily obtained from the measurements using both transmitters by
inverting (2) utnhzmg the data from Tables 2 and 3. The final cross-sections, given as
fractions of rrt, are 0.054 and 0.051 for the low and high power transmitters.

The lunar cross-section values determined here compare quite favorably with those
in the literature. In fact, except for having to use 7, from the literature we feel that the
total cross-section determination is, because of using the two transmitters and a very good
antenna pattern, correct to within +20% including systematic errors. The caveat here is
that although the 4,(t) used gives a good match between expected and observed signal
temporal behavior additional systematic error is possible. For example the very narrow
(in time) leading edge of the ~,(t) curve maybe unresolved leading to slightly large W
values thus causing o, to be underestimated. However, our cross-section determination
clearly confirms that the Arecibo 430 MHz radar is behaving as expected even though our
0, maybe somewhat low in value. Thus even in this “worst case” situation of a radar in
which the full equation (A11) must be used it has been relatively easy to perform the lunar

calibration study.



IV. DISCUSSION AND SUMMARY

Absolute calibration of a radar system can be difficuit and especially in circumstances
where results from two or more widely separated radars are to be compared a common
calibration target would be useful. We suggest that the moon which has been previously
determined to have a radar cross-section of about 7% of its projected area over 50-3000 MHz
may be an acceptable target. The large scattering cross-section makes the moon visible
to even small radars or communication systems |Reisert, 1982]. Also, the small angular -
rate of motion, relative to near earth satellites, of the moon across the sky allows for easy
tracking. In the case of the Arecibo experiment described here, tracking was accomplished
via a computer code derived from the American Ephemeris and Nautical Almanac and
on the Explanatory Supplement to the Ephemeris. Copies of this code are available on

request.

There are, however, difficulties, especially for VHF radars, associated with using the
moon as a radar target. The major problem is probably that the moon goes overhead
only between the latitudes of about +28.5°. Thus may of the midlatitude MST radars
which are not steerable or are only steerable over a small range of angles near zenith
are denied this target. A second problem involves fading of the return signal due to the
varying interference of signal components from various lunar features as the subradar point
wanders across the lunar surface (lunar libration; Hagfors and Evans, 1968]. This fading
effect must be averaged out in order to find the mean return pulse from which (assuming

0,) the radar system is calibrated.

A similar problem is fading of the signal due to the Faraday rotation which occurs
in the ionosphere. This problem is best solved by using circular polarization, otherwise
considerable care must be exercised in correctly accounting for the effect [Burns, 1970].

In summary, we found the moon to be a useful target for both power level verification
and the absolute calibration of the Arecibo 430 MHz system. We suggest that if the moon
is “visible” other radar systems such as the MST radar may be similarly calibrated. The
level of error in comparing two different radars calibrated in this fashion would likely be
+2 dB. To do better than this would be difficult and probably expensive.



~ TABLE 1. VALUES OF C AND K USED IN EQUATION (4)

Wavelength C K Reference
36 cm 21 3.573 Beckman [1965] -
23 cm 62 1.9 *
68 cm 85 0.95 Beckman [1965]
6 m 165 0.03 Klemperer [1965]
10m 190 0.0166 estimated

+ Derived from 23 cm data given by Hagfors [1967, Table 1; 1970, Table 6].




~ TABLE 2. ARECIBO 430 MHz RADAR SYSTEM PARAMETERS FOR
LUNAR CALIBRATION EXPERIMENT AND SIGNAL-TO-NOISE RATIO RESULTS

System A B
Antenna Gain 61.1 dBi
Polarization right circular - transmit

left circular - receive

System Temperature ! 339°K
IF Filter Noise Bandwidth 9.78 kHz
Pulse length |~— 2 msec
Inter-Pulse Period 101.6 msec
Pulse Shape decaying exponential
RC. time constant 16 msec 30 msec
Pre-Receiver Attenuation 20.99 dB 71.59 dB
Nominal Transmitter Power 6 W 1.6 MW
Measured SNR? 55+ .5 10.2 £+ 1.0
Effective SNR? 6.91(2) + 9% 1.47(8) + 9.8%
(No attenuation)
Absolute Received Power 2 3.16(-14) + 9% 6.73(-9) + 9.8%
(Watts)
Waveguide loss 0dB 1.25 dB
Actual Transmitted Power 59 W 1.26 MW(+19%)
(2% duty cycle) .
Tramsitter Power before losses 59 W 1.68 MW(£19%)

1 Attenuator (~290°K) plus front-end (~49°K) temperatures.

2 Based on an average of the pulse as described in the text.
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TABLE 3. LUNAR SCATTERING CROSS-SECTION RESULTS
FOUND USING EQUATION (A11) AND TABLE 2 PARAMETERS.

System A B
Nominal radar-subradar point distance R 3.674(5) km
Lunar radius 1.7383(3) km
Normalizing Integral T’ 1.430(-4)-7cr,
Ratio W (square pulse) 0.516
Ratio W (actual pulse) 0.479 0.496
Transmitted Power (Watts) 5.9 1.26(6)
Average Signal Power (Watts) 3.16(-14)+9% 6.73(-9)+9.8%

0.054+:9% .051+9.8%

Inferred lunar cross-section
(fraction of #r37)

11
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APPENDIX A: -

DERIVATION OF A LUNAR, TOTAL POWER, RADAR EQUATION

We require a form of the radar equation which relates on an absolute basis transmitted
power to total (integrated over the relevant bandwidth) received power as a function of
time as the radar pulse encounters and then traverses the moon. This radar equation will
incorporate a general axially symmetric antenna pattern as well as a general radar pulse
shape and duration. We assume in deriving this equation that the radar is “tracking” the
lunar subradar point and that lunar scattering characteristics are axially symmetric about
the line extending from the radar to the subradar point.

For the sake of simplicity in our final equation we take the origin of our time axis
(t=0) to occur when the leading edge of the radar pulse arrives at the lunar subradar
point. Thus, from Fig. Al time t indicates the location of the radar pulse while time t’
indicates “depth” into our location on the moon. Then a “square” radar pulse p(t',t) is
given as:
p(t't) =s(t' —t+A)—s(t' —¢) (A1)
where A is the pulse duration and s(t) is the unit step function (s(t>0)=1; s(t<0)=0).
A specific radar pulse shape is generated by multiplying the right hand side of (A1) by
the appropriate normalized modulation term. As discussed in the main text we choose a
decaying exponential with time constant 7; (this does not restrict our final result). The
net pulse ~(t',t) is thus: :

(' 8) = e~ Rp(e 1) (42)

where the leading edge of the pulse is located at t/ = t and the trailing edge at t' = t-A.

The lunar radar “depth” 1 corresponds to the time of propagation from the subradar
point to the “center” of the moon and back again. The lunar radius is r, =1738.3 km
thus 73 =2r,/c=11.6 msec where c is the speed of light. Thus a very short radar pulse
would yield the “impulse response” of the moon and this response would fall to zero after
11.6 msec. The response from a pulse of duration A would fall to zero after 11.6 msec+A.

The radar energy flux (joules per square meter per second) at the moon is

iy = LPALAGIEL0) ”

where L (<1) is the transmitter/transmission line loss coefficient, P, is peak transmitter
power, R and © are defined in Fig. Al, and G is the antenna gain which we assume to be
axially symmetric. In equation (A3) we assume the radar is tracking the lunar subradar
point and that the range dependency of energy flux is negligible across the lunar radius.
The energy flux given by (A3) illuminates the moon such that the high flux at the center
of beam reflects from the region of the subradar point (i.e., t'/7, <<1) while the smaller
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fluxes away from the beam center illuminate annular regions at larger t'/7,,a(t’), or ©(t').
values as shown in Fig. Al. For a particular t’ value it is readily shown that

e(t') = %sin aft’) : (A4)
a(t') = cos™ (1 - t'/n)

We assume lunar surface radar scattering characteristics to be described in terms
of o(a(t)) an isotropic scattering cross-section per unit surface area. From Fig. Al the
differential surface area of the annular ring at angle a(t') is dS=27r}sinada but from (A4)
da =dt'/rsina thus
ds = wer,dt' (A5)
The projection of differential area dS onto the plane parallel to the illuminating wavefronts
is ds(a)-cosa; thus the energy flux scattered back to the receiver is

donlt, ) = MO roreds (46)

The antenna effective area A.(= A3G/4x), a measure of the antenna capability of convert-
ing an incident energy flux to available power at the receiver [Kraus, 1950; Stutzman and
Thiele, 1981, section 1.10]) multiplied by (A8) yields the differential power received from

the differential sized annular ring. Thus
dPp(?,t) = w#ﬂ(i',ﬂ (A7)

and total received power is found by integrating over all t' from which different parts of
the pulse contribute to the power received at time t. That is

Pg(t) = @I‘:T’,,"R-; i 'e-(‘-")/fe[s(t'—z+A)-s(t'—t)]c:’(e(t'))a(t')cm(t')m,dt' (48)

where (A4) gives the relationship between t’ and the angles O(t'), a(t’). Notice that having
t' in (A8) in units of “roundtrip” travel time insures that the depth, cA/2, from which
energy in a pulse of duration A returns at any single instant is satisfied.

~ Equation (A8) may be put in more familiar terms by a renormalization procedure
where

G(©) = GoPn(©) (A9)
o(t')cosa(t') = g—‘il':(t—’)-
and "
I'= / Tn(t')weredt! (A10)
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In (A9) G, is the maximum gain while p,(©) is the normalized pattern. Also o, is the
“widebeam—~CW™ lunar total scattering cross-section and <, is the normalized, short pulse
total backscatter power (see eq. Al4) or normalized scattering cross-section.

Application of eqs. (A9) and (A10) to (A8) yields
Palt) = XZRZE0 L [™ V(s ~ 1.4.0) ~alt - )IpA(O)nFIreredt (A1)

The significant of o, becomes clear when we consider the CW (Tg, A — o0), wide beam
(pa =1) form of (A11). In this limit (A11) becomes

_A LP,G" (412)

Pr ~ (47)3R* %o

The significance of v,(t/) becomes apparent when we consider (A11) with r; — oo, p, =1,
and A << 7, then (A11) can be expressed as

2
Palt) = X gieere Jalllnmd (419

where we take 4, to be constant across the “width” of the very short probing pulse. Thus
“n(t) can be measured using a short radar pulse combined with a wide beam antenna.
That is dividing (A13) by Pr(t=0+)(the leading edge peak power) gives

= _Pg_(tl_ . (A14)

which ultimately defined ~,.
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FIGURE CAPTIONS

. Figure 1. Received relative power is plotted versus time. Shown is a 51 second

average (500 pulses) of the 2 msec long radar pulse scattered from the moon. This result
was obtained using the 1.7 MWatt main 430 MHz transmitter. The baseline (lower solid
line) corresponds to a 339°K system temperature and is found by averaging the noise in
the entire 50 msec receiving “window” excluding the pulse region. The lower dashed line
the 5 standard deviation level of the baseline estimate. The average of the pulse peak
region (upper solid line) is found using the 30 samples (50 usec sampling interval) starting
0.5 msec into the pulse form the leading edge. The upper dashed lines are the 1 standard
deviation level of the pulse peak estimate.

F’mlA.Eaﬂh—ndn/monmdndupuh-m.

Figure 2. The normalized, short pulse, wide bea.m power (v,) and normalized an-
tenna pattern squared (p3) are plotted versus angle @ expressed as lunar depth in time
units (see (A4) and Fig. Al). The edge of the moon occurs at 11.8 msec. It is clear that
“» initially decreases much more rapidly than p3. Thus the subradar point appears as an
angularly unresolved “bright spot® to the Arecibo 430 MHz3 system. The -, curve is the
68 cm result from Hagfors (1967,1970) while the antenna pattern is given by Mathews and

Breakall (1982).

Figure 3. The fully averaged and normalized received radar pulse with noise baseline
removed is plotted versus time for the low power (a.) and high power (b.) transmitters.
Also shown are the predicted pulse returns for the cases of an ideal (square) transmitter
pulse and for decaying exponential puises. The predicted returns are found using equations
(A11) or (2) or (3) employing the data from Table 2 and Fig. 2 using transmitter time
constants of infinity (ideal), 16 msec (a.), or 30 msec (b.). The quality of the predicted
versus observed results indicates the basic correctness of the approach.
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